131 research outputs found

    DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons

    Get PDF
    The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5β€² CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohortsβ€”defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)β€”were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase

    Promoter methylation of Wnt5a is associated with microsatellite instability and BRAF V600E mutation in two large populations of colorectal cancer patients

    Get PDF
    BACKGROUND: In colorectal cancer (CRC), tumour microsatellite instability (MSI) status and CpG island methylator phenotype (CIMP) status are indicators of patient outcome, but the molecular events that give rise to these outcomes remain largely unknown. Wnt5a is a critical regulator of non-canonical Wnt activity and promoter hypermethylation of this gene has emerging prognostic roles in CRC; however the frequency and prognostic significance of this epigenetic event have not been explored in the context of colorectal tumour subtype. Consequently, we investigated the frequency and prognostic significance of Wnt5a methylation in a large cohort of MSI-stratified CRCs. METHODS: Methylation was quantified in a large cohort of 1232 colorectal carcinomas from two clinically distinct populations from Canada. Associations were examined between methylation status and clinicopathlogical features, including tumour MSI status, BRAF V600E mutation, and patient survival. RESULTS: In Ontario, Wnt5a methylation was strongly associated with MSI tumours after adjustment for age, sex, and tumour location (odds ratio (OR)=4.2, 95% confidence interval (CI)=2.4-7.4, P<10(-6)) and with BRAF V600E mutation, a marker of CIMP (OR=12.3, 95% CI=6.9-21.7, P<10(-17)), but was not associated with patient survival. Concordant results were obtained in Newfoundland. CONCLUSION: Methylation of Wnt5a is associated with distinct tumour subtypes, strengthening the evidence of an epigenetic-mediated Wnt bias in CRC

    Optimised Motion Tracking for Positron Emission Tomography Studies of Brain Function in Awake Rats

    Get PDF
    Positron emission tomography (PET) is a non-invasive molecular imaging technique using positron-emitting radioisotopes to study functional processes within the body. High resolution PET scanners designed for imaging rodents and non-human primates are now commonplace in preclinical research. Brain imaging in this context, with motion compensation, can potentially enhance the usefulness of PET by avoiding confounds due to anaesthetic drugs and enabling freely moving animals to be imaged during normal and evoked behaviours. Due to the frequent and rapid motion exhibited by alert, awake animals, optimal motion correction requires frequently sampled pose information and precise synchronisation of these data with events in the PET coincidence data stream. Motion measurements should also be as accurate as possible to avoid degrading the excellent spatial resolution provided by state-of-the-art scanners. Here we describe and validate methods for optimised motion tracking suited to the correction of motion in awake rats. A hardware based synchronisation approach is used to achieve temporal alignment of tracker and scanner data to within 10 ms. We explored the impact of motion tracker synchronisation error, pose sampling rate, rate of motion, and marker size on motion correction accuracy. With accurate synchronisation (<100 ms error), a sampling rate of >20 Hz, and a small head marker suitable for awake animal studies, excellent motion correction results were obtained in phantom studies with a variety of continuous motion patterns, including realistic rat motion (<5% bias in mean concentration). Feasibility of the approach was also demonstrated in an awake rat study. We conclude that motion tracking parameters needed for effective motion correction in preclinical brain imaging of awake rats are achievable in the laboratory setting. This could broaden the scope of animal experiments currently possible with PET

    Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression.</p> <p>Methods</p> <p>To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR.</p> <p>Results</p> <p>Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes.</p> <p>Conclusion</p> <p>Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.</p

    cis-Expression QTL Analysis of Established Colorectal Cancer Risk Variants in Colon Tumors and Adjacent Normal Tissue

    Get PDF
    Genome-wide association studies (GWAS) have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL) analyses to investigate possible regulatory functions on the expression of neighboring genes. Forty microsatellite stable and CpG island methylator phenotype-negative colorectal tumors and paired adjacent normal colon tissues were used for genome-wide SNP and gene expression profiling. We found that three risk variants (rs10795668, rs4444235 and rs9929218, using near perfect proxies rs706771, rs11623717 and rs2059252, respectively) were significantly associated (FDR q-value ≀0.05) with expression levels of nearby genes (<2 Mb up- or down-stream). We observed an association between the low colorectal cancer risk allele (A) for rs10795668 at 10p14 and increased expression of ATP5C1 (qβ€Š=β€Š0.024) and between the colorectal cancer high risk allele (C) for rs4444235 at 14q22.2 and increased expression of DLGAP5 (qβ€Š=β€Š0.041), both in tumor samples. The colorectal cancer low risk allele (A) for rs9929218 at 16q22.1 was associated with a significant decrease in expression of both NOL3 (qβ€Š=β€Š0.017) and DDX28 (qβ€Š=β€Š0.046) in the adjacent normal colon tissue samples. Of the four genes, DLGAP5 and NOL3 have been previously reported to play a role in colon carcinogenesis and ATP5C1 and DDX28 are mitochondrial proteins involved in cellular metabolism and division, respectively. The combination of GWAS findings, prior functional studies, and the cis-eQTL analyses described here suggest putative functional activities for three of the colorectal cancer GWAS identified risk loci as regulating the expression of neighboring genes

    Correlation of Global and Gene-Specific DNA Methylation in Maternal-Infant Pairs

    Get PDF
    The inheritance of DNA methylation patterns is a popular theory to explain the influence of parental genetic and environmental factors on the phenotype of their offspring but few studies have examined this relationship in humans. Using 120 paired maternal-umbilical cord blood samples randomly selected from a prospective birth cohort in Bangladesh, we quantified DNA methylation by pyrosequencing seven CpG positions in the promoter region of p16, four CpG positions in the promoter region of p53, LINE-1 and Alu. Positive correlations were observed between maternal and umbilical cord blood at p16, LINE-1, and Alu but not p53. Multiple linear regression models observed a significant association between maternal and umbilical cord blood at LINE-1 and Alu (LINE-1: Ξ²β€Š=β€Š0.63, p<0.0001; Alu: Ξ²β€Š=β€Š0.28, pβ€Š=β€Š0.009). After adjusting for multiple comparisons, maternal methylation of p16 at position 4 significantly predicted methylation at the same position in umbilical cord blood (Ξ²β€Š=β€Š0.43, pβ€Š=β€Š<0.0001). These models explained 48%, 5% and 16% of the observed variability in umbilical cord %5mC for LINE-1, Alu and p16 at position 4, respectively. These results suggest that DNA methylation in maternal blood was correlated with her offspring at LINE-1, Alu, and p16 but not p53. Additional studies are needed to confirm whether these observed associations were due to the inheritance of epigenetic events or the shared environment between mother and fetus. Future studies should also use a multi-generational family-based design that would quantify both maternal and paternal contributions to DNA methylation in offspring across more than one generation

    Widespread Epigenetic Abnormalities Suggest a Broad DNA Methylation Erasure Defect in Abnormal Human Sperm

    Get PDF
    Male-factor infertility is a common condition, and etiology is unknown for a high proportion of cases. Abnormal epigenetic programming of the germline is proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. During germ cell maturation and gametogenesis, cells of the germ line undergo extensive epigenetic reprogramming. This process involves widespread erasure of somatic-like patterns of DNA methylation followed by establishment of sex-specific patterns by de novo DNA methylation. Incomplete reprogramming of the male germ line could, in theory, result in both altered sperm DNA methylation and compromised spermatogenesis.We determined concentration, motility and morphology of sperm in semen samples collected by male members of couples attending an infertility clinic. Using MethyLight and Illumina assays we measured methylation of DNA isolated from purified sperm from the same samples. Methylation at numerous sequences was elevated in DNA from poor quality sperm.This is the first report of a broad epigenetic defect associated with abnormal semen parameters. Our results suggest that the underlying mechanism for these epigenetic changes may be improper erasure of DNA methylation during epigenetic reprogramming of the male germ line

    A genome-wide DNA methylation study in colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed a genome-wide scan of 27,578 CpG loci covering 14,475 genes to identify differentially methylated loci (DML) in colorectal carcinoma (CRC).</p> <p>Methods</p> <p>We used Illumina's Infinium methylation assay in paired DNA samples extracted from 24 fresh frozen CRC tissues and their corresponding normal colon tissues from 24 consecutive diagnosed patients at a tertiary medical center.</p> <p>Results</p> <p>We found a total of 627 DML in CRC covering 513 genes, of which 535 are novel DML covering 465 genes. We also validated the Illumina Infinium methylation data for top-ranking genes by non-bisulfite conversion q-PCR-based methyl profiler assay in a subset of the same samples. We also carried out integration of genome-wide copy number and expression microarray along with methylation profiling to see the functional effect of methylation. Gene Set Enrichment Analysis (GSEA) showed that among the major "gene sets" that are hypermethylated in CRC are the sets: "inhibition of adenylate cyclase activity by G-protein signaling", "Rac guanyl-nucleotide exchange factor activity", "regulation of retinoic acid receptor signaling pathway" and "estrogen receptor activity". Two-level nested cross validation showed that DML-based predictive models may offer reasonable sensitivity (around 89%), specificity (around 95%), positive predictive value (around 95%) and negative predictive value (around 89%), suggesting that these markers may have potential clinical application.</p> <p>Conclusion</p> <p>Our genome-wide methylation study in CRC clearly supports most of the previous findings; additionally we found a large number of novel DML in CRC tissue. If confirmed in future studies, these findings may lead to identification of genomic markers for potential clinical application.</p

    18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>The CpG island methylator phenotype (CIMP) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, associated with microsatellite instability-high (MSI-high) and <it>BRAF </it>mutations. 18q loss of heterozygosity (LOH) commonly present in colorectal cancer with chromosomal instability (CIN) is associated with global hypomethylation in tumor cell. A recent study has shown an inverse correlation between CIN and CIMP (determined by MINTs, p16, p14 and <it>MLH1 </it>methylation) in colorectal cancer. However, no study has examined 18q LOH in relation to CIMP-high, CIMP-low (less extensive promoter methylation) and CIMP-0 (CIMP-negative), determined by quantitative DNA methylation analysis.</p> <p>Methods:</p> <p>Utilizing MethyLight technology (real-time PCR), we quantified DNA methylation in 8 CIMP-specific promoters {<it>CACNA1G</it>, <it>CDKN2A </it>(p16), <it>CRABP1, IGF2</it>, <it>MLH1, NEUROG1, RUNX3 </it>and <it>SOCS1</it>} in 758 non-MSI-high colorectal cancers obtained from two large prospective cohorts. Using four 18q microsatellite markers (D18S55, D18S56, D18S67 and D18S487) and stringent criteria for 18q LOH, we selected 374 tumors (236 LOH-positive tumors with β‰₯ 2 markers showing LOH; and 138 LOH-negative tumors with β‰₯ 3 informative markers and no LOH).</p> <p>Results:</p> <p>CIMP-0 (0/8 methylated promoters) was significantly more common in 18q LOH-positive tumors (59% = 139/236, p = 0.002) than 18q LOH-negative tumors (44% = 61/138), while CIMP-low/high (1/8–8/8 methylated promoters) was significantly more common (56%) in 18q LOH-negative tumors than 18q LOH-positive tumors (41%). These relations persisted after stratification by sex, location, or the status of MSI, p53 expression (by immunohistochemistry), or <it>KRAS/BRAF </it>mutation.</p> <p>Conclusion:</p> <p>18q LOH is correlated positively with CIMP-0 and inversely with CIMP-low and CIMP-high. Our findings provide supporting evidence for relationship between CIMP-0 and 18q LOH as well as a molecular difference between CIMP-0 and CIMP-low in colorectal cancer.</p

    Comprehensive Biostatistical Analysis of CpG Island Methylator Phenotype in Colorectal Cancer Using a Large Population-Based Sample

    Get PDF
    The CpG island methylator phenotype (CIMP) is a distinct phenotype associated with microsatellite instability (MSI) and BRAF mutation in colon cancer. Recent investigations have selected 5 promoters (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1) as surrogate markers for CIMP-high. However, no study has comprehensively evaluated an expanded set of methylation markers (including these 5 markers) using a large number of tumors, or deciphered the complex clinical and molecular associations with CIMP-high determined by the validated marker panel. METHOLODOLOGY/PRINCIPAL FINDINGS: DNA methylation at 16 CpG islands [the above 5 plus CDKN2A (p16), CHFR, CRABP1, HIC1, IGFBP3, MGMT, MINT1, MINT31, MLH1, p14 (CDKN2A/ARF) and WRN] was quantified in 904 colorectal cancers by real-time PCR (MethyLight). In unsupervised hierarchical clustering analysis, the 5 markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1), CDKN2A, CRABP1, MINT31, MLH1, p14 and WRN were generally clustered with each other and with MSI and BRAF mutation. KRAS mutation was not clustered with any methylation marker, suggesting its association with a random methylation pattern in CIMP-low tumors. Utilizing the validated CIMP marker panel (including the 5 markers), multivariate logistic regression demonstrated that CIMP-high was independently associated with older age, proximal location, poor differentiation, MSI-high, BRAF mutation, and inversely with LINE-1 hypomethylation and beta-catenin (CTNNB1) activation. Mucinous feature, signet ring cells, and p53-negativity were associated with CIMP-high in only univariate analysis. In stratified analyses, the relations of CIMP-high with poor differentiation, KRAS mutation and LINE-1 hypomethylation significantly differed according to MSI status.Our study provides valuable data for standardization of the use of CIMP-high-specific methylation markers. CIMP-high is independently associated with clinical and key molecular features in colorectal cancer. Our data also suggest that KRAS mutation is related with a random CpG island methylation pattern which may lead to CIMP-low tumors
    • …
    corecore